3.24 \(\int \frac{x^2 (d+e x)}{(d^2-e^2 x^2)^{7/2}} \, dx\)

Optimal. Leaf size=94 \[ \frac{x^2 (d+e x)}{5 d e \left (d^2-e^2 x^2\right )^{5/2}}-\frac{2 x}{15 d^3 e^2 \sqrt{d^2-e^2 x^2}}-\frac{2 (d-e x)}{15 d e^3 \left (d^2-e^2 x^2\right )^{3/2}} \]

[Out]

(x^2*(d + e*x))/(5*d*e*(d^2 - e^2*x^2)^(5/2)) - (2*(d - e*x))/(15*d*e^3*(d^2 - e^2*x^2)^(3/2)) - (2*x)/(15*d^3
*e^2*Sqrt[d^2 - e^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.045912, antiderivative size = 94, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {796, 778, 191} \[ \frac{x^2 (d+e x)}{5 d e \left (d^2-e^2 x^2\right )^{5/2}}-\frac{2 x}{15 d^3 e^2 \sqrt{d^2-e^2 x^2}}-\frac{2 (d-e x)}{15 d e^3 \left (d^2-e^2 x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(x^2*(d + e*x))/(5*d*e*(d^2 - e^2*x^2)^(5/2)) - (2*(d - e*x))/(15*d*e^3*(d^2 - e^2*x^2)^(3/2)) - (2*x)/(15*d^3
*e^2*Sqrt[d^2 - e^2*x^2])

Rule 796

Int[(x_)^2*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(x^2*(a*g - c*f*x)*(a + c*x^2)^(p
 + 1))/(2*a*c*(p + 1)), x] - Dist[1/(2*a*c*(p + 1)), Int[x*Simp[2*a*g - c*f*(2*p + 5)*x, x]*(a + c*x^2)^(p + 1
), x], x] /; FreeQ[{a, c, f, g}, x] && EqQ[a*g^2 + f^2*c, 0] && LtQ[p, -2]

Rule 778

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((a*(e*f + d*g) -
(c*d*f - a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(2*a*c*(p + 1)),
Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ[p, -1]

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rubi steps

\begin{align*} \int \frac{x^2 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx &=\frac{x^2 (d+e x)}{5 d e \left (d^2-e^2 x^2\right )^{5/2}}-\frac{\int \frac{x \left (2 d^2 e-2 d e^2 x\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d^2 e^2}\\ &=\frac{x^2 (d+e x)}{5 d e \left (d^2-e^2 x^2\right )^{5/2}}-\frac{2 (d-e x)}{15 d e^3 \left (d^2-e^2 x^2\right )^{3/2}}-\frac{2 \int \frac{1}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d e^2}\\ &=\frac{x^2 (d+e x)}{5 d e \left (d^2-e^2 x^2\right )^{5/2}}-\frac{2 (d-e x)}{15 d e^3 \left (d^2-e^2 x^2\right )^{3/2}}-\frac{2 x}{15 d^3 e^2 \sqrt{d^2-e^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0284838, size = 82, normalized size = 0.87 \[ \frac{3 d^2 e^2 x^2+2 d^3 e x-2 d^4+2 d e^3 x^3-2 e^4 x^4}{15 d^3 e^3 (d-e x)^2 (d+e x) \sqrt{d^2-e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(-2*d^4 + 2*d^3*e*x + 3*d^2*e^2*x^2 + 2*d*e^3*x^3 - 2*e^4*x^4)/(15*d^3*e^3*(d - e*x)^2*(d + e*x)*Sqrt[d^2 - e^
2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 77, normalized size = 0.8 \begin{align*} -{\frac{ \left ( -ex+d \right ) \left ( ex+d \right ) ^{2} \left ( 2\,{e}^{4}{x}^{4}-2\,{x}^{3}d{e}^{3}-3\,{x}^{2}{d}^{2}{e}^{2}-2\,x{d}^{3}e+2\,{d}^{4} \right ) }{15\,{d}^{3}{e}^{3}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x)

[Out]

-1/15*(-e*x+d)*(e*x+d)^2*(2*e^4*x^4-2*d*e^3*x^3-3*d^2*e^2*x^2-2*d^3*e*x+2*d^4)/d^3/e^3/(-e^2*x^2+d^2)^(7/2)

________________________________________________________________________________________

Maxima [A]  time = 0.992948, size = 151, normalized size = 1.61 \begin{align*} \frac{x^{2}}{3 \,{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} e} + \frac{d x}{5 \,{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} e^{2}} - \frac{2 \, d^{2}}{15 \,{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} e^{3}} - \frac{x}{15 \,{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{3}{2}} d e^{2}} - \frac{2 \, x}{15 \, \sqrt{-e^{2} x^{2} + d^{2}} d^{3} e^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

1/3*x^2/((-e^2*x^2 + d^2)^(5/2)*e) + 1/5*d*x/((-e^2*x^2 + d^2)^(5/2)*e^2) - 2/15*d^2/((-e^2*x^2 + d^2)^(5/2)*e
^3) - 1/15*x/((-e^2*x^2 + d^2)^(3/2)*d*e^2) - 2/15*x/(sqrt(-e^2*x^2 + d^2)*d^3*e^2)

________________________________________________________________________________________

Fricas [B]  time = 1.9073, size = 340, normalized size = 3.62 \begin{align*} -\frac{2 \, e^{5} x^{5} - 2 \, d e^{4} x^{4} - 4 \, d^{2} e^{3} x^{3} + 4 \, d^{3} e^{2} x^{2} + 2 \, d^{4} e x - 2 \, d^{5} -{\left (2 \, e^{4} x^{4} - 2 \, d e^{3} x^{3} - 3 \, d^{2} e^{2} x^{2} - 2 \, d^{3} e x + 2 \, d^{4}\right )} \sqrt{-e^{2} x^{2} + d^{2}}}{15 \,{\left (d^{3} e^{8} x^{5} - d^{4} e^{7} x^{4} - 2 \, d^{5} e^{6} x^{3} + 2 \, d^{6} e^{5} x^{2} + d^{7} e^{4} x - d^{8} e^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

-1/15*(2*e^5*x^5 - 2*d*e^4*x^4 - 4*d^2*e^3*x^3 + 4*d^3*e^2*x^2 + 2*d^4*e*x - 2*d^5 - (2*e^4*x^4 - 2*d*e^3*x^3
- 3*d^2*e^2*x^2 - 2*d^3*e*x + 2*d^4)*sqrt(-e^2*x^2 + d^2))/(d^3*e^8*x^5 - d^4*e^7*x^4 - 2*d^5*e^6*x^3 + 2*d^6*
e^5*x^2 + d^7*e^4*x - d^8*e^3)

________________________________________________________________________________________

Sympy [C]  time = 13.1192, size = 515, normalized size = 5.48 \begin{align*} d \left (\begin{cases} - \frac{5 i d^{2} x^{3}}{15 d^{9} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}} - 30 d^{7} e^{2} x^{2} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}} + 15 d^{5} e^{4} x^{4} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}}} + \frac{2 i e^{2} x^{5}}{15 d^{9} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}} - 30 d^{7} e^{2} x^{2} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}} + 15 d^{5} e^{4} x^{4} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}}} & \text{for}\: \frac{\left |{e^{2} x^{2}}\right |}{\left |{d^{2}}\right |} > 1 \\\frac{5 d^{2} x^{3}}{15 d^{9} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}} - 30 d^{7} e^{2} x^{2} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}} + 15 d^{5} e^{4} x^{4} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}}} - \frac{2 e^{2} x^{5}}{15 d^{9} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}} - 30 d^{7} e^{2} x^{2} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}} + 15 d^{5} e^{4} x^{4} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}}} & \text{otherwise} \end{cases}\right ) + e \left (\begin{cases} - \frac{2 d^{2}}{15 d^{4} e^{4} \sqrt{d^{2} - e^{2} x^{2}} - 30 d^{2} e^{6} x^{2} \sqrt{d^{2} - e^{2} x^{2}} + 15 e^{8} x^{4} \sqrt{d^{2} - e^{2} x^{2}}} + \frac{5 e^{2} x^{2}}{15 d^{4} e^{4} \sqrt{d^{2} - e^{2} x^{2}} - 30 d^{2} e^{6} x^{2} \sqrt{d^{2} - e^{2} x^{2}} + 15 e^{8} x^{4} \sqrt{d^{2} - e^{2} x^{2}}} & \text{for}\: e \neq 0 \\\frac{x^{4}}{4 \left (d^{2}\right )^{\frac{7}{2}}} & \text{otherwise} \end{cases}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*x+d)/(-e**2*x**2+d**2)**(7/2),x)

[Out]

d*Piecewise((-5*I*d**2*x**3/(15*d**9*sqrt(-1 + e**2*x**2/d**2) - 30*d**7*e**2*x**2*sqrt(-1 + e**2*x**2/d**2) +
 15*d**5*e**4*x**4*sqrt(-1 + e**2*x**2/d**2)) + 2*I*e**2*x**5/(15*d**9*sqrt(-1 + e**2*x**2/d**2) - 30*d**7*e**
2*x**2*sqrt(-1 + e**2*x**2/d**2) + 15*d**5*e**4*x**4*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2)/Abs(d**2) > 1)
, (5*d**2*x**3/(15*d**9*sqrt(1 - e**2*x**2/d**2) - 30*d**7*e**2*x**2*sqrt(1 - e**2*x**2/d**2) + 15*d**5*e**4*x
**4*sqrt(1 - e**2*x**2/d**2)) - 2*e**2*x**5/(15*d**9*sqrt(1 - e**2*x**2/d**2) - 30*d**7*e**2*x**2*sqrt(1 - e**
2*x**2/d**2) + 15*d**5*e**4*x**4*sqrt(1 - e**2*x**2/d**2)), True)) + e*Piecewise((-2*d**2/(15*d**4*e**4*sqrt(d
**2 - e**2*x**2) - 30*d**2*e**6*x**2*sqrt(d**2 - e**2*x**2) + 15*e**8*x**4*sqrt(d**2 - e**2*x**2)) + 5*e**2*x*
*2/(15*d**4*e**4*sqrt(d**2 - e**2*x**2) - 30*d**2*e**6*x**2*sqrt(d**2 - e**2*x**2) + 15*e**8*x**4*sqrt(d**2 -
e**2*x**2)), Ne(e, 0)), (x**4/(4*(d**2)**(7/2)), True))

________________________________________________________________________________________

Giac [A]  time = 1.18525, size = 86, normalized size = 0.91 \begin{align*} \frac{{\left ({\left (x{\left (\frac{2 \, x^{2} e^{2}}{d^{3}} - \frac{5}{d}\right )} - 5 \, e^{\left (-1\right )}\right )} x^{2} + 2 \, d^{2} e^{\left (-3\right )}\right )} \sqrt{-x^{2} e^{2} + d^{2}}}{15 \,{\left (x^{2} e^{2} - d^{2}\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

1/15*((x*(2*x^2*e^2/d^3 - 5/d) - 5*e^(-1))*x^2 + 2*d^2*e^(-3))*sqrt(-x^2*e^2 + d^2)/(x^2*e^2 - d^2)^3